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Dynamical system approach to phyllotaxis

F. d’Ovidio1,2,* and E. Mosekilde1,†
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2800 Lyngby, Denmark

2International Computer Science Institute, 1947 Center Street, Berkeley, California 94704-1198
~Received 13 August 1999!

This paper presents a bifurcation study of a model widely used to discuss phyllotactic patterns, i.e., leaf
arrangements. Although stable patterns can be easily obtained by numerical simulations, a stability or bifur-
cation analysis is hindered by the fact that the model is defined by an algorithm and not a dynamical system,
mainly because new active elements are added at each step, and thus the dimension of the ‘‘natural’’ phase
space is not conserved. Here a construction is presented by which a well defined dynamical system can be
obtained, and a bifurcation analysis can be carried out. Stable and unstable patterns are found by an analytical
relation, in which the roles of different growth mechanisms determining the shape is clarified. Then bifurca-
tions are studied, especially anomalous scenarios due to discontinuities embedded in the original model.
Finally, an explicit formula for evaluation of the Jacobian, and thus the eigenvalues, is given. It is likely that
problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are
modeled.

PACS number~s!: 05.45.2a, 87.18.La
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I. INTRODUCTION

Phyllotaxis is the botanical term for the characteristic g
metrical arrangements of leaves~and, by extension, of othe
botanical elements, like florets, seeds, and scales!. We shall
refer to all of these elements asprimordia, as they are ge-
nerically called in their early stage, or, with some abuse
the language, asleaves. A characteristic of phyllotaxis is the
striking regularity of the spatial patterns that emerge, of
related to mathematical quantities such as the Fibon
numbers and the golden mean. This regularity has attra
significant interest among physicists and mathematician
least since the early treatment by the Bravais brothers@1#
who referred to them asliving crystals. For a review of the
history of phyllotactic theories we refer to the recent surv
by Adler et al. @2#.

Phyllotaxis can be studied from many different view
points, ranging from static geometrical and crystallograp
considerations, over chemical reaction-diffusion equati
and dynamical systems theory to experiments with gen
control or growth conditions. Here we are interested in
morphogenetical approach, in which these kinds of patte
are studied by finding a few simple rules that mimic t
growth mechanisms around the apex of a plant. Primo
are modeled as points~or disks! formed at regular intervals
of time ~one primordium for each step! around a circle~the
apex!, and then moved away. Different rules can be us
However, in general this approach has some typical featu

~1! It involves a discrete time, iterative process, in whi
at each step a new primordium is added on the peripher
the apex, and already formed leaves are moved away;

~2! Two rules must be defined: the first one controls h
already existing primordia are advected from the apex~for
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instance, by giving the speed!; the second rule specifies ho
these leaves determine the angular position of the new
mordium.

The first rule involves a parameter, related to Richar
plastochrone ratio@3#, usually indicated withG. This is the
parameter that will be varied when we come to study bif
cations in the pattern forming process.

Usually, one looks for patterns that are conserved by
dynamics, and finds some of the geometrical properties
natural patterns: angles between subsequent leaves nea
golden mean~or, more generally, near noble numbers! and,
connecting primordia to the neighboring ones, patterns
lated to Fibonacci numbers. The importance of these res
is that the model shows that geometrical properties that
useful for plants for optimizing light exposure or seed pac
ing can be explained by some general dynamical rules.

This approach was first exploited by Hofmeister in 18
@4#, and more recently by many others. Bernasconi and B
sanade@5# worked on the elements needed to obtain cyl
drical phyllotactic patterns with two species, activato
inhibitor chemical systems. Green, Style, and Rennich@6#
studiedde novoinitiation of patterns, inhibition, and stability
from a biophysical point of view. Marzec and Kapraff d
rived a sufficient condition for uniform spacing of leave
connecting the model to noble numbers@7#. Douady and
Couder obtained phyllotactic patterns in an experiment w
magnetic droplets and a bifurcation diagram through a
merical simulation@8–11#. Koch et al. @12# introduced a
simplified model of phyllotaxis, and described generic pro
erties of the solutions. Levitov exploited an energetic a
proach on phyllotaxis@13#, and showed that this kind o
patterns can be obtained in flux lattices in layered superc
ductors@14#. Kunz @15# found analytical results about a gen
eralization of the variational problem of Levitov and the e
periment of Douady and Couder.

The present work is mainly concerned with bifurcation
Denoting the angular difference between two subsequ
354 ©2000 The American Physical Society



nc
er
he
e
v
-
th
in
er
to

lik

h
ci
s
fo
a
p

d

he
f p
th

nt
ia
e

o
nt
e

ar

ve
di

ew

so
ed
y
,
ng
m

of

es
the

rts

es

er
tic

ling
f

is

th
if

a
tes,

to

nd
as

-

e

a
e

PRE 61 355DYNAMICAL SYSTEM APPROACH TO PHYLLOTAXIS
leaves as thedivergence angle, a spiral phyllotactic pattern is
defined as having all elements with the same diverge
angle. Plotting the shared divergence angle of stable patt
versusG, one can construct a bifurcation diagram for t
algorithm. Although analytical studies have been perform
~especially we would like to mention the work of Levito
@13# and Kochet al. @12#!, typical techniques from dynami
cal systems theory cannot be straightforwardly applied at
point, as phyllotaxis is related with a growing and expand
system. A consequence of this is that the algorithm diff
from a dynamical system by the fact that it maps a vec
~positions of the existing leaves! into a longer vector~posi-
tions of the existing leavesplus the position of the new one!.
Thus, for instance, new terms have been proposed,
quasibifurcations@13# or asymptoticstates@12#.

In the present work two main results are obtained. T
first is a translation by which phyllotaxis, although asso
ated with an expanding system, can be described in term
ordinary dynamical system theory. Besides offering tools
the study of phyllotaxis itself, we hope that this approach c
be helpful in the modeling of other analogous systems ty
cal of morphogenesis~like embryology!, where growth and
expansion play a fundamental role and often seem to hin
a direct application of dynamical systems theory.

The second result is the analysis of the bifurcation p
nomena that control the emergence and disappearance o
terns, and the description of the roles of different grow
mechanisms~the expansion and the birth of a new eleme!
in determining the shape. In particular, a full bifurcation d
gram for stable and unstable patterns is analytically obtain
and a method for obtaining eigenvalues is given.

II. FROM THE ALGORITHM TO A DYNAMICAL SYSTEM

A. Algorithm

The algorithm studied in the present paper is based
ideas introduced by Hofmeister in 1868 and more rece
revisited. In particular, we will use the set of rules propos
by Douady and Couder@10#.

~1! The space is flat and two-dimensional. Elements
points, and the apex is the unit circle.

~2! The dynamics is an iterative process.
~3! At each step, already existing elements are mo

away radially from the apex, increasing their radial coor
nate with the relation

r→reG. ~1!

~4! At each step, after moving existing elements, a n
element is added on the unit circle~the apex!. The angular
coordinate is chosen by finding on the unit circle the ab
lute, leftmost minimum of an inhibitory potential generat
by already existing elements. It is necessary to specif
‘‘right’’ or ‘‘left’’ in order to resolve degenerate situations
with more than one minimum with the same value. Calli
M the operator that gives the absolute, leftmost minimu
and using polar coordinates, the new element has

rnew51, ~2!

unew5Ma„H $rk%,$uk%~a!…, ~3!
e
ns

d

is
g
s
r

e

e
-
of
r
n
i-

er

-
at-

-
d,

n
ly
d

e

d
-

-

a

,

where wherek50,1,2, . . . is the age of aleaf ~that is, the
number of steps elapsed since its formation!. H $rk%,$uk% is a
function on the unit circle that depends on the positions
existing elements, as will be explained later.

It is important to note that, after its formation, a leaf do
not change its angular position, and that the time law for
radial coordinate of the primordia is simply

rk5ekG, ~4!

To obtain Eq.~4!, we have just to consider that the leaf sta
with 1, and then apply Eq.~1!. This relation will be impor-
tant in the following, as it allows us to consider only ag
and angular coordinates.

Regarding the inhibitory potential, Douady and Coud
proposed using a relation in analogy with an electrosta
repulsion. Extending the sum to all the elements, and cal
dk(a) the distance between thekth element and a point o
angular positiona on the unit circle,

H $rk%,$uk%~a!5(
k

1

drk ,uk
~a!

. ~5!

More generally,

H $rk%,$uk%~a!5(
k

V„drk ,uk
~a!…, ~6!

whereV(d) can have different form, such ase2d, d2n, etc.
It has been shown@9# that the behavior of the system
qualitatively the same for a large class ofV functions. Also
in this work, we will not need to defineV explicitly. We will
only requireV to be monotonically decreasing and smoo
(C3, for simplicity, but many of our results are valid even
V is discontinuous!. It is now useful to apply Eqs.~1! to ~6!,
changing the dependence fromrk to kG:

H $rk%,$uk%~a!5(
k

VkG,uk
~a!5HG,$uk%~a!. ~7!

Summing up and compacting the notation, we define
parametric function that, given a set of angular coordina
returns the angular position of the new element:

f G~$uk%!ªMa„HG,$uk%~a!…. ~8!

This will be the basic quantity, and we will rarely need
explicate it.

Before proceeding, we want to specify the notation a
the terminology that will be used in the following. We use
synonymous the wordsleaf, primordium, and element. To
indicate the angular position of thekth leaf, we use the sym
bol uk , while we will reserve the symbolu for the whole set
of coordinates~i.e., u5$uk%). We use the term inhibitory
potential for the functionHG , and we shall evaluate it on th
unit circle. We use the symbolMa for the operator that
gives the position of the absolute, leftmost minimum of
function of a. To indicate a general angular coordinate, w
will use f.
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356 PRE 61F. d’OVIDIO AND E. MOSEKILDE
B. A straightforward modeling of the algorithm

We first rewrite the model described in Sec. II A wi
formal definitions, starting from leaves. At each step, lea
are in rings of radiusrk5eGk, wherek represents the age o
the leaf. The angular position of each leaf is determined
birth by minimizing the inhibitory potential. At each step o
the dynamics, a new leaf is formed on the first ring, while
others ‘‘jump’’ from their present ring to the next, outer on
Thus we can compile all the information as a vector conta
ing all angular positions in order of age. When we apply
dynamics, we move all the components one step (uk11
→uk) and we add in the first position the angular coordin
of the new leaf. It is important to note that at each step
vector length is increased by one. For example, we start w
one leaf, inf50:

u5~0!.

The second leaf will grow on the opposite side of the ap

u→u5~p,0!.

The third leaf will be somewhere in between, e.g.,p/4:

u→u5~p/4,p,0!.

And so on. Thus we obtain a vector from the previous o

~0!→~p,0!→~p/4,p,0!→•••.

The radial coordinate is always given byrk5eGk. This is
the reason why we move a coordinate to the right: to incre
r we have to increase the index. Also, we remark that
~angular! position of the new leaf is a function of all th
already existing leaves, so, in general,

~u0 ,u1 , . . . ,uN!→„f G~u0 , . . . ,uN!,u0 ,u1 , . . . ,uN…

~9!

Here f G is the function that finds the absolute, left-mo
minimum in the inhibitory potential generated byu0 , . . . ,uN
as defined in Eq.~8!.

Writing this as a set of equations, we can define a funct
that, from an N-component vector u, generates an
(N11)-component vectoru8:

u085 f G~u!,

u185u0 ,

u285u1 ,

•••

uN8 5uN21 .

~10!

We now introduce a modification to Eq.~10!: we also
apply a rotation to always have the first new leaf in the ori
of the circle (f50):
s
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u0850,

u185u02 f G~u!,

u285u12 f G~u!,

•••

uN118 5uN2 f G~u!.

~11!

This will be helpful at a later stage, when we want
consider stable patterns. At this point we have someth
similar to a dynamical system, as we have an iterat
‘‘map’’ and a ‘‘phase space.’’ However, there is a diffe
ence: the phase space is not well defined for a dynam
system, as the vector changes its length. So Eqs.~11! are not
a map from a space onto itself. To solve the problem we w
proceed as follows. First we will consider the simple case
which the number leaves is upper limited, introducing
slightly different notation. Then we will extend this approa
to an infinite set of leaves.

C. Representing an upper limited number of leaves

Consider a system with a maximum number of leaves~i.e.
points in a bidimensional space!, say k<N, disposed onN
rings around the origin. Each ring can hold only one leaf,
none. To represent a set of leaves in this system, we can
two vectors with a component for each ring. The first w
contain the angular positions of leaves, and the second
be just a place holder, each component telling, with a 0 or 1,
if the corresponding ring has a leaf or nothing. So for
stance, if we have only a leaf in the second ring (i 51, count-
ing from 0, and angular positionf) the two vectors~let us
call themu andb) will be

u5~u0 ,f,u2 ,u3 , . . . ,uN21!, b5~0,1,0, . . . ,0!.
~12!

Note thatu i ,iÞ1 can have any value. This is clearer
instead of two real vectors, we consider a single comp
vector,b components being the radii andu components the
angular coordinates:

x5x~u,b!,
~13!

xkªbke
iuk.

In this case we consider points on the unit circle or in t
origin. If we do so, it is clear that angular components w
bk50 can have any value, as they all are in the origin. W
also remark that the order of components in the vecto
important, as the index of the coordinate tells us the rad
position ~the number of the circle occupied by the leaf!.

D. Construction of the dynamical system

Now we apply the idea described in Sec. II C to the f
model. As above, we start in the ‘‘largest’’ space that we w
need; that is, a space with vectors of infinite compone
more precisely, a space of successions. We will use one
cession for the angular positions of leaves, and another
to track which positions are occupied by leaves and wh
are not. An example will clarify the idea. Let us call the fir



io

e

g
he
f
s

-
a

tie
te
ge

e
hi
ti

lar
i

ces
e,
nt
we

d,

e
d

ts

lar
gi-

PRE 61 357DYNAMICAL SYSTEM APPROACH TO PHYLLOTAXIS
successionu and the secondb. The successionb will be used
computingf G , for considering only those elements ofu that
contain a leaf, in this way:

f G~$u%,$bk%!5Ma„Hu,b,G~a!…

5MaS (
k50

`

VkG,uk
~a!bkD . ~14!

We start as usual with one leaf in zero. This meansu0
50. To show that we have only the first leaf, the success
b will be

b5$b051,bk50 k.0%.

Meanwhile, the elements ofu other than the first can b
of any value: in fact, when we evaluatef G , we will consider
only elements for whichb is equal to 1: the others, bein
multiplied bybk50 are deleted. In other terms, if we use t
complex notation as in Eq.~13!, the angular positions o
elements with vanishingb component are unimportant a
they are all mapped into the origin. For the second step,

u050, u152p, b5$b051,b151,bk50 k.1%

and so on. We can conclude as follows.
Proposition 1. Consider the setX of pairs,

xPX⇔x5$u,b%, ~15!

where

u5$uk%k50
` , b5$bk%k50

` , ukP@0,2p!, bkP$0,1%.
~16!

Consider the mapT acting onX, defined as follows:

x→Tx, ~17!

u0→0,

un→un212 f G~u,b!, n.0,

b0→1,

bn→bn21 , n.0.

~18!

Then Eqs. ~15!–~17! define a ~discrete time, infinite-
dimensional! dynamical system.

We make the following remarks.
~1! By now, we have only written the phyllotactic algo

rithm in a different form, such that it explicitly appears as
dynamical system. As we have not required any proper
from the f G function ~the function that gives the coordina
of the new leaf!, this construction can be applied to a lar
class of phyllotactic models.

~2! The two rules of the algorithm, the growth and th
inhibitory interaction, are decoupled, one determining a s
and the other the value of the new element. This separa
will be a persistent characteristic of the model. In particu
in Sec. III we show how this fact is reflected in the determ
nation of fixed points.
n

s

ft
on
,
-

III. STABLE PATTERNS AND FIXED POINTS

The above construction is useful in the sense that it pla
the phyllotactic model in a ‘‘standard’’ theoretical fram
thus allowing us to apply typical techniques. Here we wa
to find all the stable and unstable patterns. To obtain this
simply look for fixed points. The condition is

Tx5x. ~19!

Applying this condition to Eq.~17!, we obtain

u050,

un5un212 f G~u,b!, n.0,

b051,

bn5bn21 , n.0.

~20!

This, by induction, means

u050,

u15u02 f G~u,b!52 f G~u,b!,

u25u12 f G~u,b!522 f G~u,b!,

•••

un5un212 f G~u,b!52n fG~u,b!,

•••

b051,

b15b051,

b25b151,

•••

bn5bn2151,

•••.

~21!

Hence we have obtained the following result.
Proposition 2. A point ~pattern! x5$u,b% is a fixed point

of T if

un52nf, n>0,

bn51, n>0,
~22!

with

f5 f G~u,b!. ~23!

We make the following remarks.
~1! The second condition of Eq.~22! tells just that all

leaves must be formed~in this sense, as should be expecte
proposition 2 gives the ‘‘limit’’ pattern, with infinite ele-
ments!.

~2! From Eqs.~22! and ~23! we can clearly see that th
growth and the inhibitory interaction play two different an
independentroles. The growth limits the class of fixed poin
to the set of patterns described by Eq.~22!; the interaction,
by Eq. ~23!, chooses the global parameter for the particu
pattern among this class. In other words, and from a biolo
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358 PRE 61F. d’OVIDIO AND E. MOSEKILDE
cal point of view, a different interaction will change the d
vergence angles of the fixed patterns, but not the sp
shape.

~3! We can easily see that a stable pattern can only b
spiral@in fact, it must be a fixed point and thus have the fo
un52nf; if we calculate the divergence angle for any le
we obtain the same valuef G(u,b)#.

~4! It is important to recall that here we have consider
fixed points only, and not cycles or more complex structur
So, in principle, other nonequilibrium stable shapes, differ
from spirals, can arise. This actually has been observed.
for instance, Ref.@16# for cycles coming from a period
doubling bifurcation.

~5! The first condition gives a necessary and suffici
condition for the divergence angle of a spiral to be a fix
point.

The importance of the last remark becomes clear if
take a couple of steps more. First, we considerf G restricted
to spirals, that is, to points in which each leaf has the sa
divergence angle and in which all leaves are formed:

FG~f!ª f G~u,b!, ~24!

un52nf, bn51, n>0. ~25!

FIG. 1. Bifurcation diagram for fixed points~stable and un-
stable!. The picture is obtained by solving the equationFG(f)
2f50 numerically. The value off is expressed in degrees.

FIG. 2. Plot of the functionFG(f)2f for G50.87 ~values of
f in degrees!. Two symmetric solutions appear as the functi
begins to fold.
al
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Then the condition

f5 f G~u,b!

becomes

FG~f!5f. ~26!

This is an equation in just one variable and one parame
The solutions to this equation gives the divergence angle
all the fixed points, that is, of all the stable and unsta
patterns. PlottingFG(f)2f50 in the (G,f) plane~Fig. 1!
gives the exact graph of the bifurcation diagram for fix
points ~potentialVd5d22). Inspecting this bifurcation dia-
gram, some anomalies are evident. Their study will be
topic of the next sections~Figs. 2–6!.

IV. ANOMALOUS BIFURCATION PHENOMENA

As we now have a dynamical system and have determi
all the fixed points, it is natural to study how these fix
points are generated or destroyed when varying the par
eter G. Before applying standard methods we have to n

FIG. 3. Plot of the functionFG(f)2f for G50.77 ~values of
f in degrees!. As the parameterG is reduced, the fold become
sharper, and finally breaks into a discontinuity, as in the inhibit
potential a minimum is changed into a maximum~see Fig. 4!.

FIG. 4. Inhibitory potential for a spiral pattern with a divergen
angle corresponding to 180° and forG50.77 ~angles in degrees!.
The function has still an extremum at 180°, but now it is a ma
mum.
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PRE 61 359DYNAMICAL SYSTEM APPROACH TO PHYLLOTAXIS
that the model considered is not continuous. We will proce
in two steps.

~1! We will find the conditions under which the map is
least locally continuous. In these cases, we will expect us
phenomena.

~2! Besides usual bifurcations, we have to expect so
nonstandard bifurcation phenomena related to the disco
nuities. We will investigate these anomalies.

A. Origin of discontinuities

To study the discontinuities, we have to imbue our syst
with a topology. Thus we use the complex notation for poi
in phase space, and we introduce a usual norm for suc
sion:

zuxuz5 (
k50

`

a2kuxku, a.1. ~27!

Calling T the map, we will use as a necessary and su
cient condition for continuity in a pointx̄:

FIG. 5. Plot of the functionFG(f)2f for G50.48 ~values of
f in degrees!. As G is further reduced, two symmetric folds beg
to form ~aroundf5110° and 250°!.

FIG. 6. Plot of the functionFG(f)2f for G50.38 ~values of
f in degrees!. Anomalous fold bifurcation: the two folds of Fig.
now touch the zero axis, giving rise to new fixed points. Howev
the fold has already broken into a discontinuity. Instead of
saddle-node pair we have a solution and a discontinuity.
d

al

e
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lim
x→ x̄

zuT~x!2T~ x̄!uz50. ~28!

Hence we have to evaluate Eq.~28!. To do this, we start
rewriting explicitly the map@note also thatx5(u,b) and x̄

5( ū,b̄)#:

x→Tx,

u0→0,

un→un212 f G~u,b!, n.0,

b0→1,

bn→bn21 , n.0.

~29!

Then, for simplicity setting f5 f G(u,b) and f̄

5 f G( ū,b̄), and evaluating the norm:

lim
x→ x̄

zuT~x!2T~ x̄!uz

5 lim
x→ x̄

(
k51

`

a2kubk21ei (uk212f)2b̄k21ei ( ūk212f̄)u

5 lim
x→ x̄

lim
N→`

(
k51

N

a2kubk21ei (uk212f)

2b̄k21ei ( ūk212f̄)u. ~30!

Now we observe that we can always choose a~sufficiently
small! neighborhood ofx̄ in which for everyx we have

bk5b̄k , ;k<N

~otherwisezux2 x̄uz<a2N). Hence, close enough to this~e.g.,
in a radius ofx̄ less thana2N) we have

(
k51

N

a2kubk21ei (uk212f)2b̄k21ei ( ūk212f̄)u

5 (
k51

N

a2kuei (uk212f)2ei ( ūk212f̄)u. ~31!

Exchanging the limits in Eq.~30! we can see that

lim
x→ x̄

zuT~x!2T~ x̄!uz50⇔ lim
x→ x̄

uf2f̄u50. ~32!

The main consequence of~32! is that now we have iso-
lated the discontinuities, and we need to study them on a
function instead of an infinite set of equations. Explicati
f, we have

f5 f G~u,b!5Ma„Hu,b,G~a!…

5MaS (
k50

`

VkG~a2uk!bkD . ~33!

Checking the continuity of Eq.~33! as in the previous
case shows thatH depends continuously onx. This, however,

,
e
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360 PRE 61F. d’OVIDIO AND E. MOSEKILDE
is not true for theM operator. In particular a necessa
condition for a discontinuity will be thatH has a minimum
with zero second derivative or at least two equivale
minima. Here we do not need more than a necessary co
tion. To prove that the condition is also sufficient we wou
have to prove that varying theG parameter the inhibitory
potential is perturbed generically. So we can conclude
following.

Proposition 3. Consider in the dynamical system o
proposition 1, an equilibrium point with divergence anglef.
Then the system is locally continuous if the following co
ditions both hold:

~1! There is only one absolute minimum~i.e., there are
not equivalent minima!.

~2! The absolute minimum is not degenerate:

Hu,b,G9 ~f!Þ0. ~34!

We make the following remarks.
~1! Proposition 3 will be used in two ways. First, it stat

a sufficient condition under which the system is continuo
This will be required essentially for the computation of t
Jacobian. Second, it defines a region~the space where th
condition does not hold! where we have to expect unusu
bifurcation phenomena to appear.

~2! The condition is sufficient. To prove that the conditio
is also necessary we would have to show that varying thG
parameter the inhibitory potential is perturbed generica
Although this seems reasonable~and is observed in numeri
cal simulation!, we limit our analysis to the sufficiency.

~3! If the above conditions hold, the system is at le
continuous. However, as will be shown in Appendix B usi
the implicit function theorem, the system is also differe
tiable as many times as the first derivative of the inhibito
potential.

B. Anomalous bifurcations due to discontinuities

Now we investigate the effect of discontinuity on the a
pearance and disappearance of equilibria. Most of the an
sis will be performed studying numerically the behavior
the real function~26! for different values ofG ~see Fig. 1!.
Looking at the bifurcation diagram of fixed points, there a
at least two anomalous things that are evident. The first is
interruption of thep branch~at G;0.79). The second one i
the abrupt births of branches following the golden bran
We remark that in this diagram all fixed points, stable a
unstable, are plotted. So the missing solutions do not col
with other solutions, nor do they stop because of a chang
stability ~for example by a Neimark-Saker or perio
doubling bifurcation!. They are simply removed. To unde
stand this we study Eq.~26! and follow thep branch for
decreasingG ~Figs. 2–6!. Calculating eigenvalues~see Ap-
pendix B!, we find that the solution becomes unstable, giv
rise to two nodes~Fig. 2!. Then the tangency of Eq.~26!
becomes infinite at the point of disappearance, and a dis
tinuity arises~Fig. 3!. The reason for this is simple: in thi
point the inhibitory potential for a spiral with divergenc
angle of p changes the concavity, becoming a maximu
~Fig. 4!; however, this, as described in Sec. IV A, is a co
t
di-
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dition for a discontinuity. Calculations for obtaining analyt
cally this point, for different potentials, can be found in Re
@16#.

To understand the other bifurcations, we can again foll
Eq. ~26! after the first bifurcation for decreasing values ofG.
Then we find that a fold appears~Fig. 5! and touches the
FG2f50 axis at the bifurcation point. The only differenc
from a typical fold bifurcation is that before the contact
discontinuity develops~Fig. 6!. The discontinuity is of the
same type as for thep-branch case~zero second derivative!.
Thus we have a typical case, in which after a first symme
breaking bifurcation other bifurcations occur from the sa
phenomenon; however as now the system is no longer s
metric, the bifurcations become generic~the break of sym-
metry acts as a generic perturbation!. Usually, we have pitch-
forks that are changed into folds. In our case we have
same situation, with the only difference being the prese
of a discontinuity that removes the unstable solution.

Summing up, the phenomenon for the second bifurcati
is foldlike, with a collision between a stable solution and
discontinuity. The situation is displayed in Fig. 7. Actuall
we can think of the discontinuities as generalized saddle
lutions. This role is also confirmed if we compare the po
tions of the discontinuities in respect to a~section of a! basin
of attraction: then we find that they define the boundaries
usually saddles in fold bifurcations do. See Fig. 8.

V. STATIC APPROACH

Till now we have followed a dynamical approach fo
studying the phyllotactic model. However, there is also
static viewpoint, in which one tries to obtain the phyllotac
patterns by defining a function that measures the efficie
by which elements are put together. This can mean, for
stance, how much they are exposed to light~leaves!, or how
closely they are packed together~seeds!. Here our aim is not
an investigation of the connections between the static
proach and the dynamical one~see, for example, Ref@7# or
@15#!. Instead, we are interested in finding the ‘‘hidden’’ u
stable patterns. We especially want to find a way to circu
vent the discontinuities of the map described in Sec.
Since the discontinuities arise from the dynamics, to av
them we study the system statically, deriving a potential-l
function for our system. The function we will look for sha

FIG. 7. Bifurcation diagram of fixed points and singularities~in
degrees! vs G.
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have all fixed points in its extrema. The main advantage
this approach is that the class of extrema is larger than
one containing fixed points, and now there is no disconti
ous dynamics that ‘‘filters’’ it. As we shall see, using a
extrema we will be able to find the missing saddle points a
to construct a typical, continuous bifurcation scenario.

A. Deduction

We want to find a function by which all fixed patterns a
extrema. We proceed as follows.

The relation for fixed points is given by Eq.~26!, that is,

FG~f!5f,

where

FG~f!ª f G~u,b!,

un52nf,bn51, n>0.

FG is the function that gives the position of the absolu
leftmost minimum of the inhibitory potential generated by
spiral given the divergence angle. WritingFG explicitly
gives

FG~f!5 f G~$uk52kf%,$bk51%!5Ma„Hu,b,G~a!…

5MaS (
k50

`

VkG~a1kf!D .

The positions of the minima are contained in the set of
zero first derivative points, and thus we differentiate w
respect toa and equate the result to zero. Also, as we
looking for fixed points, we apply condition~23!, that is, the
position of the minimum and the divergence angle of
spiral must be the same:

S d

da (
k50

`

VkG~a1kf!DU
f5a

50. ~35!

FIG. 8. Singularities~degrees! as boundaries of the basins o
attraction. For each point, a spiral is first constructed withf as a
divergence angle, andG as a parameter. The color represents
divergence angle of the final pattern reached. Singularities see
bound the basins, as saddle solutions in saddle-node bifurca
usually do.
f
e
-

d

,

e

e

e

The set of solutions of Eq.~35! contains all the fixed
patterns. The next step is to rewrite Eq.~35! as the derivative
of a function:

d

da
SG~a!5S d

da (
k50

`

VkG~a1kf!DU
f5a

. ~36!

It is not difficult to obtain an explicit form forSG :

S d

da (
k50

`

VkG~a1kf!DUf5a5S (
k50

`

VkG8 ~a1nf!DU
f5a

5 (
k50

`

VkG8 „~k11!a…; ~37!

thus

SG~f!5E
0

f

(
k50

`

VkG8 „~k11!a…da

5 (
k50

`
1

~k11!
VkG„~k11!f…. ~38!

We can now conclude the following
Proposition 4. The dynamical system of Proposition

admits a smooth functionSG(f) for which all fixed points
are extrema.SG(f) has the form

SG~f!ª(
k50

`
1

~k11!
VkG„~k11!f…. ~39!

We make the following remarks.
~1! Equation~39! resembles a potential, as all fixed poin

of the dynamical system correspond to extrema. It can
seen as a measure of the packing efficiency minimized by
system.

~2! To obtain Eq.~39! we have used a necessary but n
sufficient condition: in fact by doing this we consider n
only the absolute, leftmost minimum, but also relati
minima, maxima, and inflection points with vanishing slop
In this way, we have avoided the discontinuities of theM
operator, and~as shown in the Sec. V B!, we are now able to
find the patterns deleted by the discontinuities.

B. Maxima of the packing energy as saddle solutions

Now we came back to the problem of the missing sad
solutions. We have noted that the fixed points of the dyna
cal system defined in proposition 1 do not coincide but
contained in the set of the extrema of theSG function. In Fig.
9 we plot minima and maxima ofSG . We can observe tha
there are no more discontinuities. In fact, in the static
proach we do not have to calculate the absolute minimu
and thus all operators are continuous. Now let us come b
to the problem of the ‘‘missing’’ unstable solutions. If w
compare Fig. 1 with Fig. 9 we can see that, in addition to
stable solutions, new solutions appear, corresponding
maxima or inflection points with vanishing slope ofSG .
They collide with the stable solutions as in a typical fo
bifurcation. Considering the derivation ofSG , a solution be-

e
to
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362 PRE 61F. d’OVIDIO AND E. MOSEKILDE
longs to Fig. 9 and not to Fig. 1 if it corresponds to a spi
pattern in which the inhibitory potential has a maximum
an inflection point, and not a minimum, when evaluated a
function of the divergence angle.

VI. CONCLUSIONS

In Sec. II the phyllotactic algorithm was translated into
well defined dynamical system, and the result is summari
in proposition 1 where a discrete-time, infinite-dimension
dynamical system is obtained. Then Sec. III imposed
condition for a point to be fixed and deduced two equatio
that characterized both stable and unstable patterns~proposi-
tion 2!. In particular, from these equations it was seen t
growth and inhibitory interactions play two independe
roles: the growth mechanism~that is, the fact that one pri
mordium is added and the other ones are pushed aw!
bounds the choice of fixed patterns to the class of spir
meanwhile, the inhibitory interaction determines the div
gence angle and~especially! the bifurcations of the solution
through a one-dimensional function@Eq. ~23!#. Figure 1
summarizes these results, showing the full bifurcation d
gram for fixed points as the loci of zeroes for Eq.~23!.

Then bifurcations were studied. First, Sec. IV A show
that the map is not continuous. Thus we started to look
conditions under which the system is at least locally conti
ous, and where usual phenomena arise. Sufficient condit
for local continuity were obtained in proposition 3, showin
that discontinuities in the dynamical system are entirely
termined by Eq.~23!. Then, in Sec. IV, anomalous bifurca
tions due to discontinuities were studied. A foldlike pheno
enon was found where, instead of the usual saddle-node
a stable solution collides with a discontinuity. Numerical c
culations displayed in Fig. 8 showed that the discontinuit
also play the role of saddle solutions as boundaries of
basins of attraction.

Aiming to recover the usual scenario, Sec. V approac
the model in a static way, trying to circumvent the singula
ties due to the dynamics. To do so, it~constructively!
showed the existence of a potential-like function, for whi
all fixed points are extrema. However, the class of extrem
larger than fixed points admitted by the dynamical syste

FIG. 9. Maxima and minima of the functionSG ~degrees!.
Minima are plotted more darkly. The extrema ofSG include all
equilibria of the system. The complementary points correspon
patterns in which the inhibitory potential has a maximum, and
thus absent from Fig. 1~the M operator only gives minima!.
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Considering all of these a new family of patterns appea
that is connected to fixed points like in a usual fold scena
The results are summarized in proposition 4 and in Figs
and 10.

Finally, Appendixes A and B give a method by which th
dynamical system can be approximated~in C0 topology! by
a finite-dimensional one. For this latter system, an expl
form for the Jacobian is given, allowing one to calcula
eigenvalues.

The main aim of this work has been to show that t
phyllotactic algorithm can be translated into a dynami
system and then benefits from the already developed, ana
cal tools from dynamical systems theory. From this point
view, Secs. III–V are just some possible examples. Ot
further possibilities can be the study of Eq.~23! with center
manifold theory, to understand the reduction from
infinite-dimensional space to a one-dimensional equation
extension of the analysis of Sec. III to cycles; a theoreti
analysis of the anomalous bifurcation, that here is mai
numerical; an investigation of the discontinuities of the s
tem, aimed at understanding if they have a biological me
ing or are just an artifact of a simplified model; and ma
others. We consider two possible further approaches to b
particular importance.

The use of center manifold theory should give a go
insight into the mechanisms by which a global property~a
common divergence angle! is selected by the local interac
tions among leaves and the apex.

We have shown that locally, inC0 topology, the system
can always be approximated by a system with a finite nu
ber of leaves. This has been useful to compute the Jaco
and then to estimate the eigenvalues. However, there
deeper meaning. As the system is qualitatively equivalen
a model with a finite number of elements, it follows that ea
bifurcation is characterized by a critical dimension numb
~the minimum number of leaves! below which it cannot be
observed.
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FIG. 10. Plot of the functionFG(f)2f for G50.05 ~value of
f in degrees!. WhereG→0, the behavior of the function become
complex, and a discontinuity seems to appear for every ratio
value off/360°, and a zero for every noble number.
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APPENDIX A: A FINITE APPROXIMATION

The dynamical system obtained in Sec. II is useful
obtaining an exact relation for fixed points. However, it
infinite dimensional. This can be a problem, for instan
when calculating eigenvalues, as their number is also in p
ciple infinite. In practice, noting that the inhibitory contribu
tion of each leaf decreases with the age, a natural idea
truncate the infinite-dimensional system considering o
leaves younger than a certain ageN ~that we can expect will
depend onG). This approach can be formalized, showi
that a truncated system is a ‘‘good’’ approximation in t
sense that it is close to the original one inC0 as much as we
want, providing thatN is sufficiently large. An important
consequence of this is that, invoking genericity, the two s
tem will share the same~at least local! bifurcation scenario.
Moreover, this approach will give us a way to estimate
eigenvalues, even if apparently the two systems have a
ferent dimension, and thus a different number of eigenv
ues.

We will proceed as follows. First we will write the trun
cated system in a form by which it can be compared to
original one. Then we will measure the distance between
two. Finally, we explicitly derive a formula for the Jacobia
of the truncated system. In all of this section, we require
systems to be at least continuous. This means that our re
will apply under the ~sufficient! continuity conditions of
proposition 3, and that the results will have alocal validity
only.

Using the same notation as in proposition 1 for the tru
cated system, we can formally write the phase space as

xNPXN⇔xN5$uN ,bN%, ~A1!

u5$uk%k50
N , b5$bk%k50

N , ukP@0,2p!, bkP$0,1%
~A2!

Then the equation for the map becomes:

xN→TNxN , ~A3!

u0→0,
~A4!

un→un212 f G,N~u,b!, 0,n,N,

b0→1,
~A5!

bn→bn21 , 0,n,N.

wheref G,N is obtained by truncating the series of Eq.~14! to
the N-th term.

However, we cannot compare two systems acting on
ferent dimensional spaces. Thus we need to add ‘‘dumm
~i.e., decoupled! equations for the other variables. To do
we suspend Eq.~A1! in the infinite-dimensional spaceX in
the following way:

x→TNx, ~A6!
t
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u0→0,

un→un212 f G~u,b!, 0,n,N, ~A7!

un→0 n>N,

b0→1,

bn→bn21 , 0,n,N, ~A8!

bn→0, n>N,

Now we will compare the truncated system as defined
Eq. ~A6! with the original one~proposition 1!. In particular,
we want to show that in theC0 topology of continuous maps
~locally! defined onX the two systems are« close; that is,
that for sufficiently largeN,

zuTN2Tuz,«, ~A9!

or, in other words,

lim
N→`

zuTN2Tuz50. ~A10!

Of course we have to specify the norm

zuTN2Tuz5sup~ zuTNx2Txuz!xPV , ~A11!

where V is the ~open! set where the local conditions o
proposition 3 hold:

lim
N→`

sup~ zuTNx2Txuz!xPV

5 lim
N→`

S supS (
k51

N

a2kubk21ei (uk212f)

2bk21ei (uk212fN)u D 1 (
k5N11

`

a2kD
5 lim

N→`
S supS (

k51

N

a2kbk21uei (2f)2ei (2fN)u D
1 (

k5N11

`

a2kD . ~A12!

We can drop the second term of Eq.~A12!, as it is the
remainder of a geometric convergent series. Also, we
overestimate@Eq. ~A12!#, considering allbk different from
zero:

lim
N→`

sup~ zuTNx2Txuz!xPV

< lim
N→`

supS (
k51

N

a2kuei (2f)2ei (2fN)u D
<S 1

121/aD lim
N→`

sup~ uei (2f)2ei (2fN)u!.

~A13!
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But Eq.~A13! converges to zero, as, under continuity con
tions of proposition 3,fN→f asN→`. Thus we can con-
clude the follows

Proposition 5. Consider the dynamical system~17! ~full
system!, the parametric dynamical system~A6! ~truncated
system! and the norm of Eq.~A11!. Then, under the conti
nuity conditions of proposition 3, the two systems are loca
«2C0 close; that is, for every«.0 there exists anN0.0
such that

zuTN2Tuz,«, ;N.N0 . ~A14!

We make the following remarks.
~1! The result is local~in a region in phase and paramet

space where the system is continuous!.
~2! Proposition 5 has an obvious practical meaning.

voking it and genericity, we can study the behavior of t
phyllotactic system considering only a finite-dimension
model. In this work we will not go further. However, there
another interesting result that emerges from it. The trunca
system is a system in which only the contribution of the l
N leaves is retained. This means that there are~integer! criti-
cal values ofN ~that is, a critical number of leaves! that
characterize local bifurcations, a sort of intrinsic dimens
of the phenomena. Thus a bifurcation also corresponds
critical value of G by which this number jumps from a
integer to another. Inspecting Eq.~39! and Fig. 9, it is not
difficult to hypothesize that this number must increase w
decreasingG, and must be greater than the number of eq
libria. In fact, theSG function must have a minimum for eac
equilibrium, and it is the sum of single maximum function
Preliminar, numerical calculations confirm this hypothesi

~3! Proposition 5 guarantees that it isalwayspossible to
approximate the system with a finite one. However, it do
not give a method to estimate how largeN must be in order
to maintain the same bifurcation structure.

APPENDIX B: JACOBIAN

Here we derive a formula to compute explicitly the Jac
bian for the approximated system. Applying the result fro
Appendix A, we can then use it to approximate eigenval
of the original system.

We start by rewriting the equations that define the tru
cated system, adopting for simplicity the notationf
5 f G(u,b):

x→TNx, ~B1!

u0→0,

un→un212f, 0,n,N,

un→0 n>N,

b0→1,

bn→bn21 , 0,n,N,

bn→0, n>N.

~B2!

Now we shall proceed backwards in respect to the defi
tion of the truncated system, observing that the dynamic
the first N coordinates is decoupled from the others. So
can decompose the map of Eq.~B1! into two operators, one
-

y

-

l

d
t

n
a

h
i-

.

s

-

s

-

i-
of
e

acting on the firstN coordinates, the other on the rest. It
easy to see that the second one is just a constant, thus ha
a null linear part~and thus all zero eigenvalues!. Meanwhile,
for the Jacobian part of the first operator we can write

Ji , jª
]TN

i

]xj
, 0< i , j <N. ~B3!

Using forx a complex notation as in Eq.~13!, Eq. ~B3! is
well defined. However, we can simplify it if we conside
that, after~at most! N steps, all the firstN bk are equal to 1.
Thus if we will use the Jacobian on singularities~fixed points
or cycles!, we can restrict our calculation only to the angul
coordinate, and thus write

Ji , jª
]TN

i

]u j
, ~B4!

ExplicatingTN
i ,

J0,j50 ~B5!

and

Ji , j5
]

u j
~u i 212f!5d i 21,j2

]f

]u j
, 0, i<N. ~B6!

Hered i 21,j denotes Kronecker’s delta.
Hence we have to compute

]f

]u j
. ~B7!

Explicatingf, we have

f5 f G~u,b!5Ma„Hu,b,G~a!…. ~B8!

Thus, the following must also hold:

d

da
Hu,b,G~a!ua5f50. ~B9!

That is, f is a solution ofHu,b,G8 (a)50. Now, under
conditions of proposition 3 we can apply the implicit fun
tion theorem and, choosinga,u0 , . . . ,uN as independen
variables, claim that

Hu,b,G8 ~a!50

implies the~local! existence of an implicit function

a5a~u0 , . . . ,uN!, ~B10!

differentiable as many times asH8, for which

]a

]u j
52

]Hu,b,G8

]u j
S ]Hu,b,G8

]a D 21

. ~B11!

So we can insert Eq.~B11! into Eq. ~B6!, and obtain

J0,j50, ~B12!
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Ji , j5d i 21,j1
]Hu,b,G8

]u j
S ]Hu,b,G8

]a D 21

, 0, i<N.

~B13!

ExplicatingH8,

Hu,b,G8 ~a!5
d

da S (
k50

N

VkG8 ~a2uk!D , ~B14!

and defining two coefficients

Cjª
]Hu,b,G8

]u j
52VjG9 ~a2u j !, ~B15!

Aª
]Hu,b,G8

]a
5 (

k50

N

„VkG9 ~a2uk!…52 (
k50

N

Ck , ~B16!

we thus obtain the following important relation that gives t
Jacobian:

J0,j50, ~B17!
Ji , j5d i 21,j2
Cj

(
k50

N

Ck

, 0, i<N. ~B18!

We make the following remarks.
~1! Although for the Jacobian we are interested in the fi

derivatives only, the implicit function theorem allows us
obtain further derivatives, as far as the inhibitory potentia
differentiable.

~2! Inspecting Eq.~B17! shows that the Jacobian is a m
trix with ones on the diagonal below the principal one, pl
coefficients (2Cj /A) that are the same for all rows~they do
not depend oni ). Although this expression is enough fo
explicitly obtaining the Jacobian, the simple and comp
form of Eq. ~B17! suggests the possibility of obtaining con
ditions on the eigenvalues. However, we will not pursue t
investigation in the present paper.

~3! The use of the implicit function theorem to obtain th
partial derivative ofTN can also be made, in the same wa
for the full system, replacing sums with series and check
convergences~that, for instance, is always obtained for th
class of potentials of Sec. II A!.
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